Introduction to Bayesian Statistics
PRACTICUM 4
USING WINBUGS TO ESTIMATE A SINGLE MEAN AND VARIANCE

BACKGROUND 
We have so far evaluated the posterior median and 95% BCI of a dichotomous outcome. Here is an example with a continuous outcome. As you saw earlier, the Bayesian way of dealing with analyzing continuous data is quite more complex than what needs to be done for dichotomous data. So, in the following example, we will try to become familiar with implementing such an approach for estimation of the posterior mean and variance of a continuous variable.

DESCRIPTION OF THE DATA

The data has been saved in the excel file “class dcc data.xlxs”. It reports the contamination of hands of children and educators with fecal coliforms in 103 classes of 52 day care centers in Québec, Canada. For this example, we will assume that all classes are independent from one another. The variables are described in the table below

	Variable name
	Description
	Coding

	dcc
	Day care center ID
	NA

	fc_kid
	Log (base 10) of the number of fecal coliforms on the hands of children per child-mL
	Contiuous

	fc_ed
	Log (base 10) of the number of fecal coliforms on the hands of educator per educator-mL
	Contiuous



The data that we will be using in this practicum has been exported to a concatenate file for easy use in Bugs. This data is called “class data short.txt”. 


Write a model in WinBugs to estimate the posterior mean and variance of the number of fecal coliforms on the hands of children per child-ml (on the log 10 scale). To do this, you will need to have some prior information about the mean and variance of fecal coliforms on the hands of children. We will assume a very vague prior for the precision (1/variance), namely a gamma distribution with parameters 0.01, 0.01 (remember that the data is on the log of base 10 and per kid-ml, so this is quite a bad precision). For the mean, we will assume a mean of 0 (which is effectively 1 colony of fecal coliform per mL on the log base 10 scale) with a precision of 0.1 (still on the log of base 10 scale), which is quite vague. 

[image: ]
1. Report and interpret the results


	 node	 mean	 sd	 MC error	  2.5%	median	97.5%	start	sample
	mu1	-0.091	0.02655	2.395E-4 	 -0.1421	-0.09104	-0.03855	1001	20000
	tau1	13.52	1.902	0.01761	 10.08	13.43	17.5	1001	20000

The median log10 fecal coliform count on the hands of kids is -0.09104 with 95% Bayesian credible interval of (-0.1421, -0.03855).  Interpretation****

2. Run the available diagnosis in WinBugs and assess if the model converged well.




 
History plots look like hairy caterpillars so there are no real convergence concerns from these.





 

Auto correlation looks like it drops off quickly so there is no concern about correlation among the posterior samples.



 


BGR plots look good, they converge and stabilize near 1 pretty quickly.

A common alternative way of specifying the variance, and which is often easier to visualize, and widely used in the literature, is to specify a prior on the standard deviation rather than the precision term. With this approach, it is assumed that the standard deviation of the parameter of interest follows a uniform distribution, which is a lot easier to visualize than the gamma distribution. In WinBUGS, we would write code similar to the following:

model
{
for (i in 1:n)
{
data[i]~dnorm(mu,tau)
}
mu~ dnorm(0,0.002)
tau<-1/(sd*sd)
sd~dunif(0,20)
var<-sd*sd
}

Of course, the values of the priors would need to be adjusted to the problem at hand. For example, a sd of 20 would result in a variance of 400, which is quite wide for the FC counts, but could be reasonable in other problems. Similarly, the prior on mu should be adapted to the problem at hand. Here, the precision of mu is 0.002 with an equivalent variance of 500.
So go ahead and run this alternative model using a uniform between 0 and 10 for the SD and a mean of 0 and precision of 0.1 for the mean. 

3. Does it modify your results?

node	 mean	 sd	 MC error 	2.5%	median	97.5%	start	sample
mu1  	-0.09043	0.02708	1.853E-4  	-0.1443	-0.09045	-0.03765	1001	20000
tau1  	13.42	1.869	0.01346	                10.02	13.34	17.33	1001	20000

Using the uniform prior for the standard deviation does not modify the results much.


Next, we will see how changing priors may impact the results. We will re-run the analysis using two other priors and compare them to the results of question 3.

a. MATCH vague:  For this prior, use the MATCH software we discussed earlier together with any pertinent prior information on the mean and variance of the number of fecal coliforms on the hands of children (on the log of base 10 per kid-ml).  Since we don’t have much info on the variability, the priors on both the mean and precision should be quite wide. It may be easier to think about the prior variance in terms of the standard deviation instead of the precision (recall that we can specify the standard deviation in the form of a uniform distribution). Write down the distribution you identify from MATCH along with any parameter values.
Prior for Mean:   Normal distribution   mu=0    sd=0.32
Prior for SD:   Gamma(2, 1/0.05=20)  
Mean (wide)
[image: ]




Variance (wide)
[image: ]

b.  MATCH strong:  For this prior, For this prior, use the MATCH software we discussed earlier together with any pertinent prior information on the mean and variance of the number of fecal coliforms on the hands of children (on the log of base 10 per kid-ml).  Let’s assume that the expert you consult to assess this prior is quite certain about the number of fecal coliforms on the hands of children and on how much that values varies in a population of toddlers.  In this case the prior distributions on both the mean and precision should be quite narrow. It may be easier to think about the prior variance in terms of the standard deviation instead of the precision (recall that we can specify the standard deviation in the form of a uniform distribution). Write down the distribution you identify from MATCH along with any parameter values.

Prior for Mean:   Normal distribution   mu=0    sd=0.15
Prior for SD:   Gamma(3.1, 1/15=6.6)  



Mean (narrow)
[image: ]

















Variance (narrow)
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4. Report the results in the Table below





	Prior type
	Mean
	Variance (or precision)

	
	Prior Distribution (parameters)
	Median
	95% Credible Interval
	Prior Distribution (parameters)
	Median 
	95% Credible Interval

	Vague
	Normal (0,0.1)
	-0.091
	(-0.14,-0.04)
	Gamma (0.01, 0.01)
	13.43
	(10.08,17.5)

	MATCH Diffuse ____________
	Normal(0,9.76 (tau))
	-0.090
	(-0.14,-0.04)
	Gamma(0.5,0.05)
	13.42
	(10.09,17.46)

	MATCH Strong  ____________
	Normal(0,44.4)
	-0.088
	(-0.14,-0.04)
	Gamma(0.33,0.14)
	13.06
	(9.82,17.01)



Vague
              node	 mean	 sd	 MC error	  2.5%	median	97.5%	start	sample
	mu1	-0.091	0.02655	2.395E-4 	 -0.1421	-0.09104	-0.03855	1001	20000
	tau1	13.52	1.902	0.01761	 10.08	13.43	17.5	1001	20000

MATCH diffuse
               node	 mean	 sd	 MC error   2.5%	median	97.5%	start	sample
	mu1	-0.09036	0.02647	2.387E-4	  -0.1412	-0.09042	-0.03812	1001	10000
	tau1	13.51	1.89	0.0175	  10.09	13.42	17.46	1001	10000

MATCH strong
              node	 mean	 sd	 MC error	 2.5%	median	97.5%	start	sample
	mu1	-0.08807	0.02647	2.387E-4	 -0.139	-0.08813	-0.03571	1001	10000
	tau1	13.16	1.844	0.01707	 9.819	13.06	17.01	1001	10000


5. Compare the median estimates and credible intervals using the three options for priors in the Table above. Comment on their similitudes / differences.
The point estimates and the 95% Bayesian credible intervals are very similar between all sets of priors on the mean and the variance.  This may be due in part to the very small values fecal coliform count can take and the limitation of the MATCH software to get down to that fine of detail, hence the MATCH diffuse and strong priors may be not all that different from each other relative to the observed data.  The mean fecal coliform count (in log base 10) changes slightly from -0.091 with the vague prior to -0.088 with the most informative prior.  Similarly, the estimated precision decreases from 13.43 with the vague prior to 13.06 with the most informative prior.





6. As before, which would best approximate the frequentist estimate?


The vague prior will have the least effect on the posterior, meaning the posterior will most closely resemble the distribution of the data.  In frequentist estimation, all inference is on the distribution of the data so the vague prior will be the best approximation to the frequentist estimate.





DEALING WITH MISSING VALUES OF THE OUTCOME

In large field epidemiological research, it is not rare to end up with several subjects with missing values. Since Bayesians view all parameters as having a probability distribution, nothing is ever truly exact, which facilitates the ability to deal with missing values in the Bayesian framework, as long as they are missing at random and are not associated with a selection bias of some kind. And even then, if someone could model the probabilities of selection, values of the missing values not missing at random could be imputed. In the data for the number of fecal coliforms on the educators (teachers)’ hands, there was one teacher that was absent at the time of sampling, and therefore we have two missing values.  Because we are aiming at estimating the posterior distribution of the mean of the number of fecal coliforms, we can use this distribution to predict the value of the missing educator.  So it is really extremely straightforward.  So what needs to be done? Nothing because we are indeed specifying the distribution and as long as it can be assumed that the value for that educator was missing at random (which was the case, there was not systematic reason for this person to be absent that day), then we can use the posterior generated from the likelihood of the OTHER data and the prior to sample a value for the missing data at each iteration.

However, when data are missing like this, it is strongly recommended to create sets of initial values corresponding to the missing values.  That is, each missing values becomes a stochastic node (parameter) which needs to be estimated starting at a certain value.  The “generate inits” command in WinBugs often generates values that may result in the program crashing.  However, for our example, with only 1 value missing, WinBugs should be able to deal with it, especially that the model is very simple at the moment.


7. Write a model to estimate the posterior mean and variance of the number of fecal coliform on the hands of the educators per educator-mL (on the log 10 scale).  Using the same priors are those for the children’s hands in question 1 (with the uniform priors on the SD) obtain predicted values for the missing educator data.   

Report and interpret the results and assess if the model has converged.


                   node	 mean	 sd	 MC error	  2.5%	median	97.5%	start	sample
	fc_ed[11]	-0.1944	0.2649	0.00179	-0.7092	-0.1957	0.3279	1001	20000
	fc_ed[12]	-0.1986	0.2651	0.001799	-0.7236	-0.1992	0.3254	1001	20000
	mu1	-0.1968	0.0263	1.936E-4	-0.248	-0.1968	-0.1454	1001	20000
	tau1	14.77	2.075	0.01503	11.02	14.69	19.11	1001	20000

[bookmark: _GoBack]The predicted values fort the two missing data points in educator are given as -0.1944 and  -0.1986.  What you do with these values now is up to you.  You could treat them as imputed values and replace the NAs in the data set with them, or you could perhaps do something more sophisticated using the posterior distribution.
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model

#likelihood
for(i in 1:103)
fc_ed[i]~dnorm(mu1,taut)

}
#priors

mu1~dnorm(0,0.01)

sd~dunif(0,10) #diffuse prior on sd
tau1<-1/(sd*sd) #compute precision from sd
var<-sd*sd

}

#initial values
list(mu 3, sd=1)
list(mu1=.8, sd=8)

#note: you need to add fc_ed[11] and fc_ed[12] as nodes to be
monitored in the #Sample Monitor Tool to get the predicted missing
value.

#note also that the stats are based on 101 observations not 103.

#Data educator
list(fc_ed=c(0.0795202,-0.25,-0.3346787,-0.278899,-
0.1239578,0.0954242,-0.0141162,-0.430103,-0.051634,-
0.3072164,NA,NA,-0.5376288,-0.5376288,0.060206,-0.1428571 -
0.278899,-0.0376288,-0.5,-0.2,-0.0387255,-0.3346787 -

0 2857143 0 0BR16802 -0 3584192 0 -0 330103 -0 20683144 -
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model

#likelihood
for 103}
fe_kid[i]~dnorm(mu1,tau1)

}
#priors

mu1~dnorm(0,0.1)
tau1~dgamma(0.01,0.01)

[
)

#initial values
list(mu1=-.3, tau1=50)

#data kid

list(fc_kid=c(0.116495,-0.1307197,-0.2091515,0,-
0.060206,0.3182129,0.1690196,0.1690196,0.5795202,0.2483658,0.0
95202,0.060206,-0.099485,-0.5,-0.060206,-0.0430043,-0.278899,-
0.2091742,-0.5376288,-0.279588 -
0.4183484,0.0954242,0.0860086,0.2985578,-0.142312,0.0596402,-
0.330103,-0.2063144,-0.2357879,-0.3333333,-0.5501717 -
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