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Gibbs Sampling

Gibbs Sampling

Suppose we want to obtain samples from p(θ1, θ2|x1, . . . , xn). Suppose
further that we know p(θ1|θ2, x1, . . . , xn) and p(θ2|θ1, x1, . . . , xn).
How it works:

1 Choose an initial value for θ2 say θ02.

2 Obtain θ11 from p(θ1|θ02, x1, . . . , xn).

3 Obtain θ12 from p(θ2|θ11, x1, . . . , xn).

4 Repeat steps 2 and 3 with the new θs a large number of times.
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Gibbs Sampling

Gibbs Sampling

This produces a Markov Chaing that “explores” the parameter space.
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Metropolis Algorithm

Metropolis Algorithm

For the Gibbs sampler we need p(θ1|θ2, x1, . . . , xn)...but often we only
have g(θ1|θ2, x1, . . . , xn) ∝ p(θ1|θ2, x1, . . . , xn)
How it works:

1 Pick an arbitrary point for the random walk.

2 Generate a candidate from a symmetric proposal distribution.

3 Compute r = g(candidate)
g(current) .

4

Let new value =

{
candidate with probability min(r,1)
current, otherwise

5 Repeat steps 2-4 a large number of times.

Point: Likelihood and Prior are all we need!
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Metropolis Algorithm

Metropolis Algorithm Example

Earlier, we derived the posterior distribution of the success probability from
a sample of 24 lung cancer subjects, 7 of which were female. In that
example we used our previous knowledge of pdfs to make the integral in
the demoninator go to 1. Suppose we want to simply specify the prior and
likelihood and employ the Metropolis Algorithm to take care of the rest.
Recall

Prior: p(θ) = Beta(15, 15)

Likelihood: p(x1, . . . , xn|θ) = θ7(1− θ)24−7

Posterior:p(θ|x1, . . . , xn) = Beta(15 + 7, 24− 7 + 15)

Anderson, Carabin (OUHSC) Intro to Bayesian Workshop May 19, 2016 6 / 12



Metropolis Algorithm

Metropolis Algorithm Example
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Metropolis Algorithm

Metropolis Algorithm Example
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Monte Carlo Estimation

Markov Chain Monte Carlo

In Bayesian analyses, all inference is on p(θ|x1, . . . , xn)

The vector θ might have many parameters θ = (θ1, . . . , θk)

Suppose we want E (θi ) =
∫
θip(θi |x1, . . . , xn)dθ(−i)

Note: θ(−i) is the vector θ excluding θi .

Now suppose we can draw a random sample from p(θ|x1, . . . , xn)

sample 1 (θ
(1)
1 , . . . , θ

(1)
k )

sample 2 (θ
(2)
1 , . . . , θ

(2)
k )

. .

. .

. .
sample B (θ

(B)
1 , . . . , θ

(B)
k )

Note: θ
(1)
1 , . . . , θ

(B)
1 is a sample from p(θ1|x1, . . . , xn)
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Monte Carlo Estimation

Monte Carlo Markov Chain

Monte Carlo estimation says that

E (θ1) ≈ 1
B

∑B
j=1 θ

(j)
1

E (θ2) ≈ 1
B

∑B
j=1 θ

(j)
2

E (g(θ1)) ≈ 1
B

∑B
j=1 g(θ

(j)
1 )
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Intro to WinBUGS

WinBUGS Example

See the files “Intro to WinBUGS.doc” and “Code Intro to WinBUGS.odc”
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Intro to WinBUGS

Compare to Frequentist Approach

Let’s briefly compare and contrast the Bayes and Frequentist approaches
for this example.

Table: 95% Confidence and Credible intervals for the WinBUGS example.

Method Prior Estimate 95% Interval

Frequentist NA 0.2917 (0.1098,0.4735)
Bayesian Beta(15,15) 0.4076 (0.2799,0.5416)
Bayesian Beta(1,1) 0.3071 (0.1489,0.4941)

Interpretation of intervals...
Frequentist: “In repeated sampling from this population, 95% of all
intervals constructed in this mannner will contain the true parameter
value.”
Bayes:“There is a 95% chance the interval contains the true parameter
value.”
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