
Bayesian Statistics
Part I: History, Philosophy, and Motivation

Part II: Introduction to Probability

Michael Anderson, PhD
Hélène Carabin, DVM, PhD

Department of Biostatistics and Epidemiology
The University of Oklahoma Health Sciences Center

May 18, 2016

Anderson, Carabin (OUHSC) Intro to Bayesian Workshop May 18, 2016 1 / 52



Outline

Outline

1 History, Philosophy and Motivation
Short Biographies
Philosophy of Science

Nurture vs. Nature

Arguments for Bayes

2 Part II: Introduction to Probability
Definitions
Conditional Probability
Bayes’ Theorem

Anderson, Carabin (OUHSC) Intro to Bayesian Workshop May 18, 2016 2 / 52



History, Philosophy and Motivation Short Biographies

Who were Bayes, Price, and Laplace?

Figure: Major players in creation of Bayes’ rule

Sharon Bertsch McGrayne †

McGrayne Bios (5:41-9:55)
†

“The Theory That Would Not Die” How Bayes’ Rule Cracked the Enigma Code, Hunted Down Russian Submarines, and

Emerged Triumphant from Two Centuries of Controversy”
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History, Philosophy and Motivation Philosophy of Science

Bayesian Paradigm
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History, Philosophy and Motivation Philosophy of Science

Philosophy of Science

What is a scientific theory?
Is a universal statement

Applies to all events in all places and time

Explains the behavior/happening of all things (describes reality).
Predicts what will happen in the future.
Typically assumes that an objective reality exists and can be explored
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History, Philosophy and Motivation Philosophy of Science

Philosophy of Science

How can one come up with a scientific theory
Deductive Method

General propositions (positive or normative) lead to specific logical
implications.
Developed as early as 400 BC by Aristotle.

Inductivism (method), empiricism (knowledge).

From observations to general conclusions.
All science must start from unbiased and non-informed (no prior
knowledge) observations.
There are many forms of inductive reasoning.
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History, Philosophy and Motivation Philosophy of Science

Philosophy

Inductivism

Empirism: concept developed by Hume 1777.
Causes of events can be determined by observation.

Generalization from observations.

Unlike deduction, the conclusions of inductive reasoning are probable
given the evidence, in contrast to being certain.

When events not following the rule occur the theory becomes a
probability rather than a certainty.
This is where Bayesian statitics can play a huge role.

Principle of the Uniformity of Nature

“The future will resemble the past”
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History, Philosophy and Motivation Philosophy of Science

Philosophy

Some forms of Inductivism
Positivism (19th Century)

Science can rise above superstition by specializing in the description and
analysis of observable phenomena, leading to discovery of natural laws.

Logical positivism

Science progresses toward truth by oservation, formulation of
hypotheses, empirical verification, leading to additional hypotheses.
Scientific questions are referred to as “positive” while unscientific ones
are “normative.”
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History, Philosophy and Motivation Philosophy of Science

Philosophy

Problems with inductivism
The theory chosen is not necessarily the right one.

Russel’s turkey

The observed data can be biased
Difficult to come up with an experiment without an underlying theory.

In other words, we are born Bayesian. . ..
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History, Philosophy and Motivation Philosophy of Science

Philosophy

Incuction has no place in the logic of science.

Largely developed by Karl Popper in “Conjectures and Refutations”
(1963).
Science is deductive where scientists fomulate hypotheses and theories
that they test by deriving observations.
Theories are not confirmed or verified, but they may be falsified.
Every “good” scientific theory is a prohibition: it forbids certain things
to happen . . .
One can try to “corroborate” a hypothesis through refuting that it is
true.

So a scientific theory becomes something that can be falsifiable, not
verifiable.

Nothing is certain though, and Popper’s philosophy is close to that of
Bayesians.
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History, Philosophy and Motivation Philosophy of Science

Philosophy

Problems with refutationism/falsification

There may be an infinity of scientific theories to be tested.
Not all theories can be verified with observations and many result in
probabilistic outcomes (ie movement of planets results from combining
several theories)
The issue of measurement error remains.
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History, Philosophy and Motivation Philosophy of Science

Philosophy

Hypothetico-deductive and falsification

Fisher with p-values (nil-null hypothesis testing).
Pearson with hypothesis testing (alternative hypothesis).
Neyman with 95% CI.

Applies Popper’s theory to statistics

“The null hypothesis is never proved or established, but is possibly
disproved, in the course of experimentation. Every experiment may be
said to exist only in order to give the facts a chance of disproving the
null hypothesis.” (Fisher 1947).

Issues with this theory

The hypothesis is true or false, there is no probability. . .
“Scientific hypotheses can be rejected (i.e. falsified), but never
established or accepted the same way.” (Gelman and Shalizi, 2013)
Many more during this workshop. . .
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History, Philosophy and Motivation Philosophy of Science

Philosophy

The Bayesian approach

Refutation and hypothetico-deductive approaches were developed to
avoid the concept that theories in science can be appraised in terms of
their “probabilities.”
Theories usually lie between being certainly right or certainly wrong, we
cannot tell. . .
“It is often stated that one should experiment without preconceived
ideas. This is simply impossible; not only would it make every
experiment sterile, but even if we were ready to do so, we could not
implement this principle. Everyone stands by his own conception of the
world, which he cannot get rid of so easily.” (Poincaré, 1905)
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History, Philosophy and Motivation Philosophy of Science

Philosophy

Inductivism: requires 3 conditions

Make SEVERAL observations of the events resulting from the theory
(for example, all heated metals expand).
Make obsevations under SEVERAL CONDITIONS

The theory must hold under ALL conditions.

NO observation can go against the theory.
SO if A has been observed under various conditions, and if ALL A have
characteristic B, then all A lead to B.
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History, Philosophy and Motivation Philosophy of Science

Philosophy

Bayesian statistics have an inductive approach

Start with a prior distribution (prior knowledge, multitude of
observations).
Get data (observe under different conditions).
Obtain a posterior distribution (update prior knowledge).

However, Bayesian statistics do not have to follow the
hypothetico-deductive and refutation theories.

Preconceived idesa are allowed and even encouraged.
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History, Philosophy and Motivation Philosophy of Science

Motivation and History

The allegory of our statistical lives

Most of us are born Bayesians.

“It is remarkable that this science (probability), which
originated in the consideration of games of chance, should
have become the most important object of human
knowledge.”

∼ Pierre-Simon de Laplace (1749-1827)

McGrayne WWII (16:02-30:23)
McGrayne Air France Flight 447 (2:30-4:00)

Anderson, Carabin (OUHSC) Intro to Bayesian Workshop May 18, 2016 18 / 52

http://www.youtube.com/watch?v=8oD6eBkjF9o
http://www.youtube.com/watch?v=8oD6eBkjF9o


History, Philosophy and Motivation Philosophy of Science

Motivation and History

But by adolescence...

Fisher’s work at Rothamstad advanced experimental design.
McGrayne Fisher (12:44-16:00)
McGrayne Obscurity (29:57-36:31)

Are these methods appropriate for observational studies?

Today’s message-“It’s never too late to have a happy childhood.”
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History, Philosophy and Motivation Arguments for Bayes

Motivation and History

Why go Bayesian?

Another powerful tool for your tool kit.

measurement error from misclassification
complex dependencies among observations
missing data

Frequentist probabilities don’t always make intuitive sense.

McGrayne Frequentist (9:56-12.44)
Example: Probability of an H-bomb accident.

Bayesian “credible intervals” can be correctly interpreted by intro stat
students.

P-values and confidence intervals are somewhat ill defined.

Example: A study finds that out of 24 subjects with lung cancer 7 are
female.
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History, Philosophy and Motivation Arguments for Bayes

Motivation and History

Example: 7 out of 24 subjects with lung cancer are female.

Gender Gender
0 0
1 0
0 0
0 0
1 0
0 0
1 0
1 0
1 0
0 1
0 0
1 0

Figure: One-tailed Binomial p-value.
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History, Philosophy and Motivation Arguments for Bayes

Motivation and History

Example: 7 out of 24 subjects with lung cancer are female.

Figure: P-values depend on the researcher’s intention.
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Part II: Introduction to Probability

Experiment, Outcome, Sample Space, and Event

Experiment

A process or procedure for which there is more than one possible outcome.

Outcome

The results of a single trial of an experiment.

Sample Space S

The collection of all possible outcomes of an experiment.

Event

A subset of the S . A collection of outcomes of interest.
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Part II: Introduction to Probability Definitions

Examples of Sample Space

Experiment 1:
Tossing one coin
one time:
S = {H,T}

Experiment 2:
Tossing one coin 4
times:

How many ways to
get

all Tails?
at least 2 Tails?
at least 1 Head?

S =



H H H H
H H H T
H H T H
H T H H
H H T T
H T T H
H T H T
H T T T
T H H H
T H H T
T H T H
T T H H
T H T T
T T H T
T H T T
T T T T


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Part II: Introduction to Probability Definitions

Examples of Sample Space

Rolling one die: S = {1, 2, 3, 4, 5, 6}
Rolling two dice:

Figure: The sample space for two dice.
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Part II: Introduction to Probability Definitions

Example of an Event

Let A be the event that the sum of the dice is 6.

Figure: The sample space for two dice.
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Part II: Introduction to Probability Definitions

Example of an Event

Let A be the event that the sum of the dice is 6.

Figure: The sample space for two dice.
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Part II: Introduction to Probability Definitions

Axioms of Probability

For a sample space S

1 the probability of the i th outcome is pi

2 0 ≤ pi ≤ 1

3
∑n

i=1 pi = 1
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Part II: Introduction to Probability Definitions

Venn Diagrams

It is often useful to express events in S as a Venn Diagram

gives you a feel for the outcomes common to the events.

depicts event/S ratio.
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Part II: Introduction to Probability Definitions

Combinations of Events

Intersection of Events (A ∩ B)

The set of outcomes that belong to both A “AND” B.
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Part II: Introduction to Probability Definitions

Combinations of Events

Intersection of Events (A ∩ B)

For independent A and B
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Part II: Introduction to Probability Definitions

Combinations of Events

Mutually Exclusive (disjoint) Events

Two events A and B are said to be mutually exclusive if (A ∩ B) = ∅.
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Part II: Introduction to Probability Definitions

Combinations of Events

Union of Events (A ∪ B)

The set of outcomes that belong to either A “OR” B.
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Part II: Introduction to Probability Definitions
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Part II: Introduction to Probability Definitions

Combinations of Events

Complement of A, Ac

The set of all outcomes that are not in A.
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Part II: Introduction to Probability Conditional Probability

Example: Risk of Mortality during the West Africa Ebola
Virus Outbreak of 2014†

Guinea Sierra Leone Liberia Total

Yes 2544 3956 4810 11310
No 1270 10168 5868 17306

Total 3814 14124 10678 28616

P(Yes)=11310/28616≈0.40.
What if we have additional information such as location (country) of the
case?
What is the probability of mortality given the location of the case (i.e.
P(Yes|location))?

P(Yes|Guinea) = 2544/3814≈0.67.

P(Yes|SierraLeone) = 3956/14124≈0.28.

P(Yes|Liberia) = 4810/10678≈0.45.
†

http://www.cdc.gov/vhf/ebola/outbreaks/2014-west-africa/case-counts.html
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Part II: Introduction to Probability Conditional Probability

What is a Conditional Probability?

Conditional Probability of Events A and B

If A and B are events in S , and P(B) > 0, then the conditional probability
of A given B is

P(A|B) =
P(A ∩ B)

P(B)

and

P(B|A) =
P(B ∩ A)

P(A)

Note: This gives us the general formulas for computing P(A ∩ B).

P(A ∩ B) = P(A)P(B|A).

P(A ∩ B) = P(B)P(A|B).

Note: P(A)P(B|A) = P(B)P(A|B)
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Part II: Introduction to Probability Conditional Probability

Independence

Independence

Two events A and B are said to be independent if the occurence of one
event in no way influences the probability of occurence of the other event.
More formally this means

P(A|B) = P(A)

or equivalently
P(B|A) = P(B)

So, for independent events A and B, P(A ∩ B) = P(A)P(B).
Let’s contrast independent events with mutually exclusive events.

Independent Mutually Exclusive

P(A ∩ B)
P(A|B)
P(B|A)
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Part II: Introduction to Probability Conditional Probability

Practicum 1

See Practicum 1 Handout
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