The following provides a summary of the content of this module.

I. Clinical Trial Design

- **Terminology:**
 - **Efficacy:** What the intervention accomplishes in an ideal setting
 - **Effectiveness:** What the intervention accomplishes in actual practice (incomplete compliance to protocol)
 - **Equipoise:** “uncertainty as to the benefits or harm from an intervention among the expert medical community”

- **Question Components:** Population, Intervention, Comparison/control, Outcome, Timing

- **Clinical Trial Phases**
 - **Early development**
 - Phase 0 studies: pharmacokinetic and pharmacodynamic profiles, administration of sub-pharmacological doses and for a short time period to a low number of humans, verify drug targets
 - Phase I studies: Study treatment mechanisms; find appropriate or maximum tolerated dose (drug studies)
 - **Middle development** (Phase II studies) Study safety and evidence for biologic activity, such as tumor response, of a new treatment in small group of patients
 - **Comparative studies** (Phase III studies): Compare the efficacy of two or more different treatments, focus on “hard” endpoints like survival
 - **Late development** (Phase IV studies): Expanded safety studies, designed to identify uncommon side effects and interactions with other therapies

- **Control comparison**
 - Would like to estimate the treatment effect beyond
 - The thought of being treated
 - Involvement in a clinical trial (Hawthorne effect)
 - Spontaneous cure or recovery
 - Placebo or standard of care
 - Process to assign or select control
 - Randomly
 - Non-randomly
 - Concurrent controls treated at the same time (e.g., two different surgeons prefer different surgical approaches)
 - Historical control, treated previously with placebo or standard of care; comparison using existing outcome data for the control patients
 - Hybrid: some randomly assigned some non-randomly selected

- **Approaches to minimize bias**
 - Randomize treatment and control assignment: expect balance of baseline characteristics in large samples, removes bias of self-selection
 - Stratified randomization: performed within stratum defined by potential confounding factors, ensure possible confounders are balanced across treatments
 - Block randomization: ensure balance in treatment assignment over time
 - Cluster randomization: randomize individuals as a group (e.g., class, family, community) to avoid contamination between intervention and control and for feasibility of implementation
 - Blinding: patient response and evaluation of outcome, if double-blinded, are not affected by knowledge of treatment
 - Single blind: treated subjects unaware of which treatment they received.
 - Double blind: subject and person evaluating outcome unaware of treatment assignment
o Intent-to-treat analysis: analyze data from all randomized patients according to randomized assignment regardless of outcome or adherence; avoid self-selection bias and over estimating treatment effects
o Cross-over design: experimental unit receives more than 1 treatment in non-overlapping time periods (addresses potential confounding factors that vary between patients because within-subject comparisons of the treatment versus control can be made)

II. Sample Size Justification

- Hypotheses:
 o Null hypothesis: \(H_0 \)
 - Typically a statement of no treatment effect; Assumed true until evidence suggests otherwise
 - Example: \(H_0: \) Mean FEV\(_1\) is same in treatment groups
 o Alternative: \(H_A \)
 - Reject null hypothesis in favor of alternative hypothesis; Often two-sided
 - Example: \(H_A: \) Mean FEV\(_1\) differs between treatment groups

- Types of hypothesis testing errors:
 o **Type I error**: false positive (falsely conclude treatment is effective relative to control or treatments differ)
 o **Type II error**: false negative (miss a true treatment effect)

- Significance level: alpha (\(\alpha \))
 - Probability of a Type I error
 - Probability of a false positive
 - Example: If the effect on FEV\(_1\) of the treatments do not differ, what is the probability of incorrectly concluding that there is a difference between the treatments?
 - Typically chosen to be 5%, or 0.05

- Power: 1-beta (1-\(\beta \))
 - Probability of detecting a true treatment effect
 - Power = (1- probability of a false negative) = (1-probability of Type II error)
 - Example: If the effects of the treatments do differ, what is the probability of detecting such a difference?
 - Typically chosen to be 80-99%

- Factors influencing Sample Size:
 o Assuming all other factors fixed, required sample size increases when the following changes occur:
 - \(\uparrow \) power \(\Rightarrow \) \(\uparrow \) sample size
 - \(\downarrow \) significance level (e.g., alpha = 0.05 reduced to 0.01) \(\Rightarrow \) \(\uparrow \) sample size
 - \(\uparrow \) variability in response \(\Rightarrow \) \(\uparrow \) sample size
 - \(\downarrow \) effect size \(\Rightarrow \) \(\uparrow \) sample size

- Factors influencing Power:
 o Assuming all other factors fixed, power decreases when the following changes occur:
 - \(\downarrow \) significance level (e.g., alpha = 0.05 reduced to 0.01) \(\Rightarrow \) \(\downarrow \) power
 - \(\downarrow \) effect size \(\Rightarrow \) \(\downarrow \) power
 - \(\uparrow \) variability in response \(\Rightarrow \) \(\downarrow \) power
 - \(\downarrow \) sample size \(\Rightarrow \) \(\downarrow \) power