The following provides a summary of the content of this module.

I. Clinical Trial Design

- Terminology:
 - o Efficacy: What the intervention accomplishes in an ideal setting
 - <u>Effectiveness</u>: What the intervention accomplishes in actual practice (incomplete compliance to protocol)
 - o Equipoise: "uncertainty as to the benefits or harm from an intervention among the expert medical community"
- Question Components: Population, Intervention, Comparison/control, Outcome, Timing
- Clinical Trial Phases
 - o Early development
 - Phase 0 studies: pharmacokinetic and pharmacodynamic profiles, administration of subpharmacological doses and for a short time period to a low number of humans, verify drug targets
 - Phase I studies: Study treatment mechanisms; find appropriate or maximum tolerated dose (drug studies)
 - <u>Middle development</u> (Phase II studies) Study safety and evidence for biologic activity, such as tumor response, of a new treatment in small group of patients
 - <u>Comparative studies</u> (Phase III studies): Compare the efficacy of two or more different treatments, focus on "hard" endpoints like survival
 - <u>Late development</u> (Phase IV studies): Expanded safety studies, designed to identify uncommon side effects and interactions with other therapies
- Control comparison
 - Would like to estimate the treatment effect beyond
 - The thought of being treated
 - Involvement in a clinical trial (Hawthorne effect)
 - Spontaneous cure or recovery
 - o Placebo or standard of care
 - Process to assign or select control
 - Randomly
 - Non-randomly
 - Concurrent controls treated at the same time (e.g., two different surgeons prefer different surgical approaches)
 - Historical control, treated previously with placebo or standard of care; comparison using existing outcome data for the control patients
 - Hybrid: some randomly assigned some non-randomly selected
- Approaches to minimize bias
 - Randomize treatment and control assignment: expect balance of baseline characteristics in large samples, removes bias of self-selection
 - Stratified randomization: performed within stratum defined by potential confounding factors, ensure possible confounders are balanced across treatments
 - Block randomization: ensure balance in treatment assignment over time
 - Cluster randomization: randomize individuals as a group (e.g., class, family, community) to avoid contamination between intervention and control and for feasibility of implementation
 - Blinding: patient response and evaluation of outcome, if double-blinded, are not affected by knowledge of treatment
 - Single blind: treated subjects unaware of which treatment they received.
 - Double blind: subject and person evaluating outcome unaware of treatment assignment

- Intent-to-treat analysis: analyze data from all randomized patients according to randomized assignment regardless of outcome or adherence; avoid self-selection bias and over estimating treatment effects
- Cross-over design: experimental unit receives more than 1 treatment in non-overlapping time periods (addresses potential confounding factors that vary between patients because within-subject comparisons of the treatment versus control can be made)

II. Sample Size Justification

- Hypotheses:
 - o Null hypothesis: H₀
 - Typically a statement of no treatment effect; Assumed true until evidence suggests otherwise
 - Example: H₀: Mean FEV₁ is same in treatment groups
 - $\circ \quad \text{Alternative:} \ H_A$
 - Reject null hypothesis in favor of alternative hypothesis; Often two-sided
 - Example: H_A: Mean FEV₁ differs between treatment groups
- Types of hypothesis testing errors:
 - o <u>Type I error</u>: false positive (falsely conclude treatment is effective relative to control or treatments differ)
 - <u>Type II error</u>: false negative (miss a true treatment effect)
 - o Significance level: alpha (α)
 - Probability of a <u>Type I error</u>
 - Probability of a false positive
 - Example: If the effect on FEV₁ of the treatments do not differ, what is the probability of incorrectly concluding that there is a difference between the treatments?
 - Typically chosen to be 5%, or 0.05
 - o Power: 1-beta (1- β)
 - Probability of detecting a true treatment effect
 - Power = (1- probability of a false negative) = (1-probability of <u>Type II error</u>)
 = (1-β) = probability of a true positive
 - Example: If the effects of the treatments do differ, what is the probability of detecting such a difference?
 - Typically chosen to be 80-99%
- Factors influencing Sample Size:
 - o Assuming all other factors fixed, required sample size increases when the following changes occur:
 - \uparrow power \Rightarrow \uparrow sample size
 - \downarrow significance level (e.g., alpha = 0.05 reduced to 0.01) \Rightarrow \uparrow sample size
 - \uparrow variability in response \Rightarrow \uparrow sample size
 - \downarrow effect size \Rightarrow \uparrow sample size
- Factors influencing Power:
 - o Assuming all other factors fixed, power decreases when the following changes occur:
 - \downarrow significance level (e.g., alpha = 0.05 reduced to 0.01) $\Rightarrow \downarrow$ power
 - \downarrow effect size $\Rightarrow \downarrow$ power
 - \uparrow variability in response $\Rightarrow \downarrow$ power
 - \downarrow sample size $\Rightarrow \downarrow$ power