Meta-analysis

David M. Thompson Director, Training Unit Biostatistics and Epidemiology (BERD) Core OSCTR

Biostatistics, Epidemiology, and Research Design (BERD) Core

http://osctr.ouhsc.edu/biostatisticsepidemiology-core

BERD Training Unit http://osctr.ouhsc.edu/training-unit

Metaanalysis, David M. Thompson, 2014 http://osctr.ouhsc.edu NIGMS award U54GM104938

2

Systematic reviews and meta-analysis

A systematic review

is a review of a *clearly formulated question* that uses systematic and explicit methods to identify, select, and critically appraise relevant research, and to collect and analyze data from the studies that are included in the review.

Meta-analysis

refers to the use of statistical techniques in a systematic review to analyze, summarize and integrate the results of included studies.

A systematic review may or may not include a meta-analysis..

Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009) Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(7): e1000097.

PRISMA checklist (Moher et al., 2009)

Objectives, which parallel elements of a clearly formulated clinical question

Patient type Intervention Comparison Outcome Study Design

Studies or sources of data

data sources and dates searched replicable electronic search strategy accounting for "gray literature" and publication bias

Criteria for inclusion of studies

Quantitative methods

Principal summary measures (e.g. relative risk, difference in means)

Results of individual studies, ideally with a forest plot

Methods of combining results, and measure of consistency among studies that shared similar outcome measures, inclusion criteria, type and duration of treatment

Synthesis of results, including confidence interval and measure of consistency

Results of individual studies reported using "forest plots"

31. 			ß block	ker deaths		
	No (%) of deaths	patients	Logrank	Variance	Ratio of crude death rates (99% CI)	
Study	ß blocker	Control	- expected	- expected	ß blocker: control	
Wilcox (oxprenolo	14/157 l) (8.9)	10/158 (8.9)	2.0	5.6		
Norris (propranol	21/226 ol) (9.3)	24/228 (9.3)	-1.4	10.2		
Multicentre (propranol	15/100 ol) (15.0)	12/95 (12.6)	1.2	5.8		
Baber (propranol	28/355 ol) (7.9)	27/365 (7.4)	0.9	12.7		
Andersen (alprenolol	61/238 (25.6)	64/242 (26.4)	-1.0	23.2		
Balcon (propranol	14/56 ol) (25.0)	15/58 (25.9)	-0.2	5.5		
Barber (practolol)	47/221 (21.3)	53/228 (23.2)	-2.2	19.5		
Wilcox (propranol	36/259 ol) (13.9)	19/129 (14.7)	-0.7	10.5		
CPRG (oxprenolo	9/177 I) (5.1)	5/136 (3.6)	1.1	3.3		
Multicentre (practolol)	102/1533 (6.7)	127/1520 (8.4)	-13.0	53.0	-	
Barber (propranol	10/52 ol) (19.2)	12/47 (25.5)	-1.6	4.3		Lewis, S., & Clarke, M. (2001).
BHAT (propranol	138/1916 ol) (7.2)	188/1921 (9.8)	-24.8	74.6		Forest plots: Trying to see the
Multicentre (timolol)	98/945 (10.4)	152/939 (16.2)	-27.4	54.2		<i>322(7300):</i> 1479–1480.
Hjalmarson (metoprolo	40/698 i) (5.7)	62/697 (8.9)	-11.0	23.7		
Wilhelmsso (alprenolol	n 7/114) (6.1)	14/116 (12.1)	-3.4	4.8	· · · · · · · · · · · · · · · · · · ·	http://www.pubmedcentral.nih.
Total *	640/7047 (9.1)	784/6879 (11.4)	-81.6	310.7		<u>gov/articlerender.fcgi?artid=11</u> 20528
Doduction 0	1% (SEE 0) D -0.0	001			0 0.5 1.0 1.5 2.0	
Heterogenei	ty between 15 trials	$\chi^2 = 13.9; d$	lf=14; P>0.1		Treatment effect P < 0.0001	Clinical and Translational Science Institute Located at The University of Oklahoma Health Sciences Center

nal

* 95% confidence interval as shown for the odds ratio

Example 1 Fixed effects analysis

Moseley, A.M., Stark, A., Cameron, I.D., & Pollock, A. (2008). Treadmill training and body weight support for walking after stroke. Cochrane Database of Systematic Reviews, 2, 2008.

Analysis 01.02. Comparison 01 Treadmill and body weight support versus other interventions, Outcome 02 walking speed (m/sec) at end of treatment phase

Review: Treadmill training and body weight support for walking after stroke Comparison: 01 Treadmill and body weight support versus other interventions Outcome: 02 walking speed (m/sec) at end of treatment phase

TM%BWS		Other interventions		Weighted Mean Difference (Fixed)	Weight	Weighted Mean Difference (Fixed)
N	Mean(SD)	N	Mean(SD)	95% CI	(%)	95% CI
t start of	treatment					
22	0.06 (0.18)	34	0.07 (0.17)	1919 • 1999 • 199	57.3	-0.01 [-0.10, 0.08]
24	0.51 (0.40)	25	0.46 (0.35)	+	11.5	0.05 [-0.16, 0.26]
6	0.32 (0.42)	7	0.26 (0.25)		3.5	0.06 [-0.32, 0.44]
15	0.07 (0.19)	15	0.11 (0.19)	+	27.7	-0.04 [-0.18, 0.10]
67		81		+	100.0	-0.01 [-0.08, 0.06]
square=0	.63 df=3 p=0.	89 l² =0.0%				
25 p=0.	8					
, at start o	f treatment					
8	0.78 (0.30)	9	0.84 (0.27)		16.6	-0.06 [-0.33, 0.21]
20	1.63 (0.80)	10	0.97 (0.64)		4.4	0.66 [0.13, 1.19]
20	1.22 (0.74)	10	0.97 (0.64)	 -	4.7	0.25 [-0.26, 0.76]
25	0.71 (0.30)	25	0.60 (0.22)	+	57.9	0.11 [-0.04, 0.26]
10	0.69 (0.34)	10	0.72 (0.28)		16.5	-0.03 [-0.30, 0.24]
83		64		•	100.0	0.09 [-0.02, 0.20]
-square=6	.80 df=4 p=0.	15 12 =41.2%				
58 p=0.	1					
	N t start of 1 22 24 6 15 67 square=0 25 p=0. 3 at start of 8 20 20 25 10 83 -square=6 58 p=0	N Mean(SD) t start of treatment 22 0.06 (0.18) 24 0.51 (0.40) 6 0.32 (0.42) 15 0.07 (0.19) 67	N Mean(SD) N t start of treatment 22 0.06 (0.18) 34 24 0.51 (0.40) 25 6 0.32 (0.42) 7 15 0.07 (0.19) 15 67 81 square=0.63 df=3 p=0.89 l ² =0.0% 25 $p=0.8$ q 15 0.78 (0.30) 9 q 1.63 (0.80) 10 20 1.63 (0.80) 10 q 1.22 (0.74) 10 25 0.71 (0.30) 25 0.71 (0.30) 25 0.71 (0.30) 10 83 64 $-5quare=-6.80$ df=4 p= 0.15 l ² = 41.2% 58 p= 0.1 12	N Mean(SD) N Mean(SD) t start of treatment 22 0.06 (0.18) 34 0.07 (0.17) 24 0.51 (0.40) 25 0.46 (0.35) 6 0.32 (0.42) 7 0.26 (0.25) 15 0.07 (0.19) 15 0.11 (0.19) 67 81	N Mean(SD) N Mean(SD) 95% CI t start of treatment 22 0.06 (0.18) 34 0.07 (0.17) \bullet 24 0.51 (0.40) 25 0.46 (0.35) \bullet \bullet \bullet 6 0.32 (0.42) 7 0.26 (0.25) \bullet \bullet \bullet 15 0.07 (0.19) 15 0.11 (0.19) \bullet \bullet \bullet 67 81 square=0.63 df=3 p=0.89 l ² = 0.0% 25 p=0.8 \bullet \bullet \bullet 25 p=0.8 \bullet \bullet \bullet \bullet \bullet \bullet 20 1.63 (0.80) 10 0.97 (0.64) \bullet \bullet \bullet \bullet 20 1.22 (0.74) 10 0.97 (0.64) \bullet \bullet \bullet \bullet \bullet 25 0.71 (0.30) 25 0.60 (0.22) \bullet \bullet \bullet \bullet \bullet 83 64 \bullet \bullet \bullet \bullet \bullet	N Mean(SD) N Mean(SD) 95% CI (%) t start of treatment 22 0.06 (0.18) 34 0.07 (0.17) 57.3 24 0.51 (0.40) 25 0.46 (0.35) 11.5 6 0.32 (0.42) 7 0.26 (0.25) 3.5 15 0.07 (0.19) 15 0.11 (0.19) 27.7 67 81 100.0 square=0.63 df=3 p=0.89 l ² = 0.0% 100.0 25 p=0.8 1 100.0 100.0 34 start of treatment 8 0.78 (0.30) 9 0.84 (0.27) 16.6 20 1.63 (0.80) 10 0.97 (0.64) 4.4 4.7 25 0.71 (0.30) 25 0.60 (0.22) 57.9 10 0.69 (0.34) 10 0.72 (0.28) 16.5 83 64 1000 9.72 (0.28) 16.5 100.0

Metaanalysis, David M. Thompson, 2014 http://osctr.ouhsc.edu NIGMS award U54GM104938

Aggregating (weighting and "pooling") results of several studies To arrive at overall estimate of outcome, study results are weighted inversely to their variability.

The more precise its estimate, the more heavily a study is weighted.

Weights depend on both sample size and within-sample variability.

Metaanalysis, David M. Thompson, 2014 http://osctr.ouhsc.edu NIGMS award U54GM104938

Analysis 01.02. Comparison 01 Treadmill and body weight support versus other interventions, Outcome 02 walking speed (m/sec) at end of treatment phase

Review: Treadmill training and body weight support for walking after stroke Comparison: 01 Treadmill and body weight support versus other interventions Outcome: 02 walking speed (m/sec) at end of treatment phase

Study	TM%BWS		Other interventions		Weighted Mean Difference (Fixed)	Weight	Weighted Mean Difference (Fixed)
	N	Mean(SD)	N	Mean(SD)	95% CI	(%)	95% CI
01 dependent in walking	at start of	treatment					
Kosak 2000	22	0.06 (0.18)	34	0.07 (0.17)	ter 🕈 🕂 ser des	57.3	-0.01 [-0.10, 0.08]
Nilsson 2001a	24	0.51 (0.40)	25	0.46 (0.35)	+	11.5	0.05 [-0.16, 0.26]
da Cunha Filho 2002	6	0.32 (0.42)	7	0.26 (0.25)		3.5	0.06 [-0.32, 0.44]
Werner 2002a	15	0.07 (0.19)	15	0.11 (0.19)	+	27.7	-0.04 [-0.18, 0.10]
Subtotal (95% CI)	67		81		+	100.0	-0.01 [-0.08, 0.06]
Test for heterogeneity ch	i-square=0	.63 df=3 p=0.	89 l² =0.0%		이 사람이 집 나는 것		
Test for overall effect z=	0.25 p=0.	8					
02 independent in walkir	ig at start o	of treatment					
Nilsson 2001b	8	0.78 (0.30)	9	0.84 (0.27)		16.6	-0.06 [-0.33, 0.21]
Pohl 2002a	20	1.63 (0.80)	10	0.97 (0.64)		4.4	0.66 [0.13, 1.19]
Pohl 2002b	20	1.22 (0.74)	10	0.97 (0.64)		4.7	0.25 [-0.26, 0.76]
Eich 2004	25	0.71 (0.30)	25	0.60 (0.22)	-	57.9	0.11 [-0.04, 0.26]
Jaffe 2004	10	0.69 (0.34)	10	0.72 (0.28)	+	16.5	-0.03 [-0.30, 0.24]
Subtotal (95% CI)	83		64		•	100.0	0.09 [-0.02, 0.20]
Test for heterogeneity ch	ii-square=6	.80 df=4 p=0.	15 12 =41.2%				
Test for overall effect z=	1.58 p=0	1			18 R 19 R		

Favours other

Favours TM%BWS

Me 9 taa

Measuring consistency (homogeneity) of studies' results

Individual weights used to calculate Cochran's Q:

 $Q = \Sigma w_i$ [outcome of study i - overall effect]²

Large values for Q suggest heterogeneity (lack of consistency)

Related statistic: I² = 100% x (Q-df)/Q percentage of variation among study outcomes due not to chance, but to heterogeneity among studies.

Metaanalysis, David M. Thompson, 2014 http://osctr.ouhsc.edu NIGMS award U54GM104938

Analysis 01.02. Comparison 01 Treadmill and body weight support versus other interventions, Outcome 02 walking speed (m/sec) at end of treatment phase

Review: Treadmill training and body weight support for walking after stroke Comparison: 01 Treadmill and body weight support versus other interventions Outcome: 02 walking speed (m/sec) at end of treatment phase

Study	TM%BW	rs i	Other interventions	Weighted Mean Difference (Fixed)	Weight	Weighted Mean Difference (Fixed)	
	N	Mean(SD)	N	Mean(SD)	95% CI	(%)	95% CI
01 dependent in walking	at start of	f treatment					
Kosak 2000	22	0.06 (0.18)	34	0.07 (0.17)	1997 - 1 997 - 1997 - 1997	57.3	-0.01 [-0.10, 0.08]
Nilsson 2001a	24	0.51 (0.40)	25	0.46 (0.35)	+	11.5	0.05 [-0.16, 0.26]
da Cunha Filho 2002	6	0.32 (0.42)	7	0.26 (0.25)		3.5	0.06 [-0.32, 0.44]
Wemer 2002a	15	0.07 (0.19)	15	0.11 (0.19)		27.7	-0.04 [-0.18, 0.10]
Subtotal (95% CI)	67		81		+	100.0	-0.01 [-0.08, 0.06]
Test for heterogeneity ch	ni-square=	0.63 df=3 p=0.	.89 l² =0.0%				
Test for overall effect z=	0.25 p=0	0.8					
02 independent in walking	ng at start	of treatment					
Nilsson 2001b	8	0.78 (0.30)	9	0.84 (0.27)	100 - - 1 - 100 - 100	16.6	-0.06 [-0.33, 0.21]
Pohl 2002a	20	1.63 (0.80)	10	0.97 (0.64)		4.4	0.66 [0.13, 1.19]
Pohl 2002b	20	1.22 (0.74)	10	0.97 (0.64)		4.7	0.25 [-0.26, 0.76]
Eich 2004	25	0.71 (0.30)	25	0.60 (0.22)	-	57.9	0.11 [-0.04, 0.26]
jaffe 2004	10	0.69 (0.34)	10	0.72 (0.28)		16.5	-0.03 [-0.30, 0.24]
Subtotal (95% CI)	83		64		•	100.0	0.09 [-0.02, 0.20]
Test for heterogeneity ch	ni-square=	6.80 df=4 p=0	.15 12 =41.2%				
Test for overall effect z=	1.58 p=0	0.1					
					<u></u>		
					-1.0 -0.5 0 0.5 1.0		
	22 13				Favours other Favours TM%BWS		

Metaanalysis, David M. Thompson, 2014 http://osctr.ouhsc.edu NIGMS award U54GM104938

Relatively consistent studies are combined using a fixed effects model,

which assumes that each study measures the same outcome,

and that the outcome has a true and fixed value in the population.

Relatively inconsistent (heterogenous) studies can still be combined in a *random effects model*,

which assumes the studies are a random sample from a family of studies that address slightly different questions.

A random effects model estimates the same overall effect as a fixed effects model,

but produces wider confidence intervals, which reflects the underlying studies' heterogeneity.

A family of studies that address "slightly different questions?"

If we conceive of a clinical question as multidimensional:

Patient group Intervention Comparison Outcome

then even if studies address the same outcome, they address different questions if, across studies:

patient characteristics vary

interventions are inconsistent

comparison groups are diverse

Metaanalysis, David M. Thompson, 2014 http://osctr.ouhsc.edu NIGMS award U54GM104938

Example 2 Random effects analysis

Gibbs, S, & Harvey, I. (2008). Topical treatments for cutaneous warts. Cochrane Database of Systematic Reviews. 2, 2008.

Analysis 15.01. Comparison 15 Aggressive vs gentle cryotherapy, Outcome 01 Cure rate

Review: Topical treatments for cutaneous warts

Comparison: 15 Aggressive vs gentle cryotherapy

Outcome: 01 Cure rate

Study	aggressive cryo n/N	'gentle' cryo n/N	Relative Risk (Random) 95% Cl	Weight (%)	Relative Risk (Random) 95% Cl
Berth-Jones 1994	79/169	57/155	-	38.2	1.27 [0.98, 1.65]
Connolly 1999	42/71	25/75	-	34.5	1.77 [1.22, 2.58]
Hansen 1986	24/33	7/27		24.3	2.81 [1.43, 5.49]
Sonnex 1988	14/31	0/31		3.1	29.00 [1.81, 465.72]
Total (95% CI)	304	288	-	100.0	1.90 [1.15, 3.15]
Total events: 159 (aggressi	ive cryo), 89 ('gentie' cryo)				
Test for heterogeneity chi-	-square=10.76 df=3 p=0.0	I 1² =72.1%			
Test for overall effect z=2.	50 p=0.01				
			0.1 0.2 0.5 1 2 5 10		
			Favours gentle cryo Favours aggressive		

Metaanalysis, David M. Thompson, 2014 http://osctr.ouhsc.edu NIGMS award U54GM104938

Funnel plots

Horizontal axis: effect size.

Vert. axis proportional to study size and precision. Less precise studies toward bottom.

Larger studies (toward top) yield more precise estimates that should approximate true effect size (�).

Smaller studies (toward bottom) yield less precise, more variable estimates.

Sutton, A.J., Duval, S.J., Tweedie, R.L., Abrams, K.R., & Jones, D.R. (2000). Empirical assessment of effect of publication bias on meta-analyses. *BMJ*,320:1574-1577.

Funnel plots and publication bias

The graph typically resembles an inverted funnel.

Publication bias is suggested if review finds no small and negative studies.

, David M. Thompson, 2014 du MGMS award U54GM104938

OKLAHOMA Clinical and Translational Science Institute Located at The University of Oklahoma Health Sciences Center 19

Cochran's Q and I² statistics (details)

Measures of consistency vs. heterogeneity among study results $Q = \Sigma w_i$ [study outcome i - overall effect]²

> a weighted sum of squared differences between individual study outcomes and the overall effect across studies.

Cochran's Q is distributed as a chi-square statistic with k-1 degrees of freedom (where k is number of studies)

The statistic's p-value relates to the null hypothesis that individual study estimates are consistent with one another.

Related statistic: I² = 100% x (Q-df)/Q percentage of variation across study outcomes due to heterogeneity of studies rather than chance.

Me

20 taa

Egger test

A test of funnel plot asymmetry that tests null hypothesis that y-intercept $(\beta_0)=0$ in a linear regression model: $y = \beta_0 + \beta_0 x$ where y is the estimate (or effect size), divided by its standard error

X is precision (reciprocal of the standard error of the estimate).

If $\beta_0 \neq 0$, there is evidence of bias

Test's power to detect bias depends on number of studies (data points in funnel plot)

Egger M, et al. (1997). Bias in meta-analysis detected by a simple, graphical test. British Medical Journal, 315, 629-634.

Egger essentially flips the funnel plots and calculates a regression line that relates the outcome to the study's precision.

The line's intercept should be zero in the absence of bias.

Biostatistics, Epidemiology, and Research Design (BERD) Core

http://osctr.ouhsc.edu/biostatisticsepidemiology-core

BERD Training Unit http://osctr.ouhsc.edu/training-unit

